
Taurida National Vernadsky University

THREE PERSONS WHO CHANGED THE WORLD

Katsitadze O. G.
a first year student
Faculty of Mathematics and
Computer Science

Scientific Adviser:

Anokhina N. P.
Foreign Languages Department

Simferopol – 2004

Part 1

DONALD E. KNUTH

1.0. Background

Donald Ervin Knuth is considered one of the greatest living mathematicians. He specializes

in Computer Science. To him is attributed promoting Computer Science from “craft” to

science. His many scientific monographs include The Art of Computer Programming,

which is now considered “the bible” of every computer scientist.

Another major achievement of Donald Knuth is TEX typesetting engine for producing

high-quality scientific documents (and its by-product, the so-called “literate programming”

concept and tools). It is not surprising therefore that he is versed in typesetting, and his

many books on the subject, among which is Computers and Typesetting series, cover the

typesetting tools he developed and general typesetting and font design principles.

1.1. Biography

Donald E. Knuth was born on January 10, 1938 in Milwaukee, Wisconsin. He studiededucation

mathematics as an undergraduate at Case Institute of Technology, where he also wrote

software at the Computing Center. The Case faculty took the unprecedented step ofunprec.’d step

awarding him a Master’s degree together with the B.S. he received in 1960. After graduate

studies at California Institute of Technology, he received a Ph.D. in Mathematics in 1963

and then remained on the mathematics faculty. Throughout this period he continued toemployment

be involved with software development, serving as consultant to Burroughs Corporation

from 1960–1968 and as editor of Programming Languages for ACM publications from 1964–

1967.

He joined Stanford University as Professor of Computer Science in 1968, and wasprofessor

appointed to Stanford’s first endowed chair in computer science nine years later. As a

university professor he introduced a variety of new courses into the curriculum, notably

Data Structures and Concrete Mathematics. In 1993 he became Professor Emeritus of The

Art of Computer Programming. He has supervised the dissertations of 28 students.

Knuth began in 1962 to prepare textbooks about programming techniques, and thisauthoring

work evolved into a projected seven-volume series entitled The Art of Computer Program-

ming. Volumes 1–3 first appeared in 1968, 1969, and 1973. Having revised these three

in 1997, he is now working full time on the remaining volumes. Approximately one mil-

lion copies have already been printed, including translations into six languages. He took

ten years off from this project to work on digital typography, developing the TEX systemTEX

for document preparation and the METAFONT system for alphabet design. NoteworthyMETAFONT

by-products of those activities were the WEB and CWEB languages for structured documen-WEB, CWEB

tation, and the accompanying methodology of Literate Programming. TEX is now used to

produce most of the world’s scientific literature in physics and mathematics.

March 27, 2004 1

Donald E. Knuth 1.2. The Art of Computer Programming

His research papers have been instrumental in establishing several subareas of com-research

puter science and software engineering: LR(k) parsing; attribute grammars; the Knuth-

Bendix algorithm for axiomatic reasoning; empirical studies of user programs and profiles;

analysis of algorithms. In general, his works have been directed toward the search for a

proper balance between theory and practice.

Professor Knuth received the ACM Turing Award in 1974 and became a Fellow ofawards

the British Computer Society in 1980, an Honorary Member of the IEEE in 1982. He

is a member of the American Academy of Arts and Sciences, the National Academy of

Sciences, the National Academy of Engineering, and a foreign associate of l’Academie des

Sciences (Paris) and Det Norske Videnskaps-Akademi (Oslo). He holds five patents and has

published approximately 160 papers in addition to his 19 books. He received the Medal

of Science from President Carter in 1979, the American Mathematical Society’s Steele

Prize for expository writing in 1986, the New York Academy of Sciences Award in 1987,

the J. D. Warnier Prize for software methodology in 1989, the Adelsköld Medal from the

Swedish Academy of Sciences in 1994, the Harvey Prize from the Technion in 1995, and

the Kyoto Prize for advanced technology in 1996. He was a charter recipient of the IEEE

Computer Pioneer Award in 1982, after having received the IEEE Computer Society’s

W. Wallace McDowell Award in 1980; he received the IEEE’s John von Neumann Medal

in 1995. He holds honorary doctorates from Oxford University, the University of Paris,

St. Petersburg University, and more than a dozen colleges and universities in America.

Professor Knuth lives on the Stanford campus with his wife, Jill. They have twopersonal

children, John and Jennifer. Music is his main avocation.

1.2. The Art of Computer Programming

The book consists of 7 volumes, of which only first three are published, Volume 4 is innames

preparation, and Volumes 5, 6, and 7 are still only projected. Names of the volumes are:

• Volume 1 Fundamental Algorithms

• Volume 2 Seminumerical Algorithms

• Volume 3 Sorting and Searching

• Volume 4 Combinatorial Algorithms, in preparation. If all goes as planned, Volume 4

will be ready in the year 2007.

• Volume 5 Syntactic Algorithms, estimated to be ready in 2010.

After Volumes 1–5 are done, Donald Knuth plans to publish Volume 6 (the theory of

context-free languages) and Volume 7 (compiler techniques).

Back in the 1960’s Donald Knuth started out to write a book in 12 chapters entitledhistory

The Art of Computer Programming. By 1967 the plan had expanded to a seven-volume

work (still only 12 chapters). The first three volumes had been published by 1973. Since

then the first two volumes have been through 2nd editions and now 3rd editions. The

outline for Volume 4 (just two of the original 12 chapters) has expanded to three sub-

volumes, but we are still waiting to see it. The chance of volumes 6 & 7 ever being written

seems increasingly remote.

March 27, 2004 2

Donald E. Knuth 1.2. The Art of Computer Programming

At the end of 1999, these books were named among the best twelve scientific mono-Amer. Scientist

graphs of the century by American Scientist, along with: Dirac on quantum mechanics,

Einstein on relativity, Mandelbrot on fractals, Pauling on the chemical bond, Russell and

Whitehead on foundations of mathematics, von Neumann and Morgenstern on game the-

ory, Wiener on cybernetics, Woodward and Hoffmann on orbital symmetry, Feynman on

quantum electrodynamics, Smith on the search for structure, and Einstein’s collected pa-

pers.

The book is not about computer programming in the broad sense, but about thedetailed

algorithms and methods which lie at the heart of most computer systems. Fundamental

Algorithms contains background information for the series. Chapter 1 provides mathe-

matical preliminaries and basic programming concepts, along with an introduction to the

MIX assembly language, used throughout for implementations. Chapter 2 covers simple

information structures: lists, trees, and related data structures.

The two chapters in Seminumerical Algorithms cover pseudo-random numbers—their

generation and statistical testing—and numerical computation—doing arithmetic with

floating point numbers, rationals, and polynomials.

Almost everyone who has ever programmed has written a bubble sort at some point,

but the full complexities of sorting algorithms are another story entirely. After an intro-

duction to the mathematics of permutations, Sorting and Searching presents and analyzes

an extensive array of algorithms for sorting in memory (insertion, exchange, selection,

merging, and distribution algorithms), sorting on secondary storage, and searching.

The Art of Computer Programming is not a work for everyone, not even for allgeneral

programmers. It will be a valuable reference for those working on the implementation and

optimization of key algorithms and data structures, but the more mathematically inclined

will dip into it simply for pleasure. Knuth himself clearly enjoys the subtleties of the

mathematics as much as anything; he writes at one point:

“Even if sorting were almost useless, there would be plenty of rewarding reasonsquote on sorting

for studying it anyway! The ingenious algorithms that have been discovered show

that sorting is an extremely interesting topic to explore in its own right. Many

fascinating unsolved problems remain in this area, as well as quite a few solved

ones.” [Sorting and Searching, page 3]

and he provides some gloriously learned historical tidbits and mathematical digressions.

The mathematics is heavy going in places, but the more difficult sections are marked and

the material is laid out in such a way that those seeking algorithms to implement and

performance analyses can skip the proofs and derivations and the more esoteric material.

Exercises are liberally provided, along with proper answers, which take up around aexercises

quarter of each volume. The exercises are carefully graded in difficulty on a scale from 0

to 50, and range from trivial tests of definitions to unsolved research problems. Reading

The Art of Computer Programming is a serious enough undertaking in itself, but anyone

who succeeds in doing all the exercises will have earned themselves several doctorates.

March 27, 2004 3

Donald E. Knuth 1.3. Concrete Mathematics

1.3. Concrete Mathematics

This book was written by Donald Knuth in co-authorship with Ronald L. Graham and

Oren Patashnik.

What is “concrete” math, as opposed to other types of math? The authors explainexpl. ‘concrete’

that the title comes from the blending of CONtinuous and disCRETE math, two branches

of math that many seem to like to keep asunder, though each occurs in the foundation of

the other. The topics in the book, such as sums, generating functions, and number theory,

are actually standard discrete math topics; however, the treatment in this text shows

the inherent continuous (read: calculus) undergirding of the topics. Without calculus,

generating functions would not have come to mind and their tremendous power could not

be put to use in figuring out series.

This is a serious math book for those who are willing to dot every i and cross every t.description

Unlike most math texts (esp. graduate math texts), nothing is omitted along the way.

Notation is explained (very important), common pitfalls are pointed out (as opposed to

the usual way students come across them—by getting back bleeding exams), and what is

important and what is not as important are indicated.

To someone who has been through the rigors of math grad school, this book is a

delight to read; to those who have not, they must keep in mind that this is a serious text

and must be prepared to do some real work. Very bright high school students have gotten

through this text with little difficulty.

Some of the exercises in the book are serious research topics. They don’t necessarilyexercises

tell you that when they give you the problem; if you’ve worked on the problem for a week,

you should turn to the answers in the back to check that there really is a solution.

The formulas from this book can actually come in handy “in real life,” especially if

one has to use math a lot.

1.4. TEX

Contemporary history of typesetting

Until about twenty years ago, typesetting was virtually ignored by the vast majority ofold way

mathematicians, scientists, and scholars in general: manuscripts were prepared using a

typewriter, the more esoteric symbols (which meant almost all symbols for mathemati-

cians) were laboriously inserted by hand, and the whole was then simply dispatched to the

publisher. Some time later galleys would be returned, emendations noted in the margin,

and once again the whole would be sent to the publisher. A similar but shorter cycle

was probably repeated for the page proofs, and finally the author’s intentions appeared in

final form in the finished book. At no point did the author and the typesetter communi-

cate directly, and indeed the former was almost certainly virtually unaware of the latter’s

existence.

The typesetter, however, was only too aware of the author: mathematical copy istypes.’s probl.

traditionally referred to as ‘penalty copy’ in the printing trade, since it is notoriously

March 27, 2004 4

Donald E. Knuth 1.4. TEX

difficult to set correctly. In the time that his colleague could set ten pages of straight text,

the mathematical typesetter was barely able to accomplish a single page, and even when

set he knew that there was every possibility that it would have to be reset more than

once, since mathematicians are only too keen to invent new symbols of their own when

no existing symbol seems entirely appropriate. And since the typesetter would never have

encountered such a symbol before, he would (quite reasonably) assume that it was simply

a badly drawn version of a symbol with which he was familiar, and substitute the latter. . .

Needless to say, some of the more aware authors began experimenting with computerdaisy-wheel

technology as soon as it became generally accessible, and for a while the academic world

seemed convinced that if it were possible to get just a couple more symbols onto the daisy

wheel of a Diablo printer, all would become possible: there were even specialist companies

who would re-mold a daisy wheel, replacing an apparently unwanted glyph with one which

its owner deemed indispensable. Of course, the approach was doomed to failure: one can

no more set mathematics with a fixed set of 144 glyphs than can one with a set of 128,

and despite the best efforts of all concerned, the daisy-wheel printer was soon consigned

to the scrap bin.

In parallel with this, the dot-matrix printer manufacturers first began to have a sig-dot-matrix

nificant impact. With a 7 × 5 dot matrix, there are potentially

35
∑

i=0

(

35

i

)

= 235

different characters (a very large number indeed!), but unfortunately a number of these

are virtually indistinguishable: a single dot at coordinates (4, 3) looks astonishingly like

another single dot at coordinates (4, 4) to even the most astute reader (there are something

like 33,034,338,305 distinct characters, as opposed to a total of 34,359,738,368 characters,

where a character is regarded as distinct if it’s not simply the result of sliding another

character horizontally, vertically, or both; this figure is based on an analysis by Dr. Warren

Dicks of the Autonomous University of Barcelona). Furthermore, the print quality of a

7× 5 dot-matrix printer is so appallingly bad that no attempt should ever be made to set

a book using one—unfortunately this well-meant advice was seldom heeded at the time.

Of course, in order to exploit these technological revolutions, suitable software hadROFF

to be written, and the UNIX world in particular decided to standardize on ROFF and its

derivatives: NROFF, TROFF, and finally DITROFF all made their mark. Unfortunately

none of the ROFF derivatives ever directly supported the typesetting of mathematics, and

so adjunct programs such as EQN and TBL had to be used to add mathematical functional-

ity. There were also commercial systems, used to set publications such as the Transactionscommercial

of the American Mathematical Society, but these were both expensive and arcane, using

a rather non-mnemonic syntax to represent the possible mathematical constructions.

Fortunately (as is absolutely clear in retrospect), at least one eminent mathematician

believed that something better not only could, but should, be created; and being not only

a mathematician but a computer scientist, he decided to create it. His name was Knuth,

and his creation was TEX.

March 27, 2004 5

Donald E. Knuth 1.4. TEX

TEX comes into play

Yet had it not been for a happy coincidence, TEX might never have been born. At thehappy conincid.

time, Knuth was working on his opus magnum, a seven-book series entitled The Art ofTAOCP

Computer Programming, and by 1977 the popularity of the early volumes of this series2nd edition

had proved so great that Volume 2 had already run to a second edition. Unfortunately, or

fortunately as it turned out later, the timing of this was such that whilst the first editionhot-lead

had been set using traditional hot-lead technology, the second edition was produced using

one of the first phototypesetters [an aside to readers: throughout this paper the term1st phototype

typesetter is used to mean both the person performing the task of setting type, and the

equipment used to achieve that end; it is hopefully always clear from the context which of

these two meanings is to be inferred, since there is no other word which could easily and

felicitously be substituted for either of these usages]. And whilst the new phototypesetter

was more than capable in theory of achieving results as good as, if not better than, the

traditional hot-lead device used previously, the results in practice left a great deal to be

desired. Knuth, as a mathematician and computer scientist, was convinced that the faultstart TEX devel.

lay not in the technology but in the software used to drive it, and he decided that rather

than see his life’s work appear in second-rate format, he would devote a short portion of

his professional life to developing a suite of software which would exploit the full potential

of the phototypesetter. Little did he know when he took this brave decision that it was

to take not the anticipated one year but at least ten, although he most certainly had a

demonstrably working version within his anticipated time frame.

The first published reference to TEX is probably Mathematical Typography, published1st ref. to TEX

as report STAN–CS–78–648 by the Computer Science Department of Stanford University;

in the bibliography to this, Knuth gives the definitive reference as being Tau Epsilon Chi,

a system for technical text which was at the time “in preparation.” It is now sadly out of

print. For those interested in the subject, the former paper makes fascinating reading, and

the bibliography alone makes it a more than worthwhile acquisition; it was reproduced

in the Bulletin of the American Mathematical Society, in which form it should still be

available.

TEX was both typical and atypical of programs of its era: it was typical in that it wastypical

completely script-oriented, predating as it did any widely used graphical user interface;

it was atypical in that it was a completely programmable macro programming language,atypical

in which there were no reserved words, and in which even individual characters could

change their semantics on the fly. Thus a TEX document consisted both of the text

to be typeset and the commands to accomplish that typesetting, and only TEX itself

could unambiguously determine whether any particular element of the document was to

be interpreted as ‘program’ or ‘data’.

Despite being created primarily in order to accomplish one particular end—the type-standard in SU

setting of Volume 2 of The Art of Computer Programming—TEX rapidly took on a life of

its own, and soon became the de facto standard for typesetting within much of Stanford

University. Before long its fame had spread, and by 1980 the TEX Users Group had sprungTUG

March 27, 2004 6

Donald E. Knuth 1.4. TEX

into existence, with members of the Steering Committee drawn from far beyond the re-

stricted domain of Stanford faculty. The American Mathematical Society were represented

on that Committee, and liaison between the AMS and Knuth was very close: Knuth as-trademark prot.

signed the TEX logo to the AMS who then applied for trademark protection to prevent it

being used to describe any unauthorized modification of TEX—unfortunately this applica-

tion was rejected because of a prior registration of TEX (sic) by Honeywell, but despite

this lack of formal registration, Knuth’s high profile and high standing ensure that the

TEX logo (or its non-typeset equivalent, TeX) is universally recognized and respected.

Evolution of TEX. WEB, TANGLE, and WEAVE

Within a couple of years, it became clear that the initial implementation of TEX left some-reimplement.

thing to be desired, both in terms of functionality and in terms of portability, and Knuth

set out to redress both by reimplementing TEX from scratch. This time he decided to es-

chew SAIL (‘Stanford Artificial Intelligence Language’) as the language of implementation,

and instead to adopt the far more widely available programming language Pascal. To fur-

ther increase its portability, he adopted only a strict subset of Pascal, encompassing only

those features which he was confident could be found (or easily emulated) on all Pascal

implementations; but he also decided to take this opportunity to render the program in aliterate progr.

form which he termed ‘literate’: that is, he wanted people to be able to read the source

of TEX in the same way that they might read a book, and to therefore be able to benefit

by being exposed to a major piece of software engineering presented in a highly literate

manner. Once again Knuth decided that there were no adequate tools available for this,

and once again he digressed from the main project by breaking off to design and implement

the concept of a WEB program, together with its two adjunct programs TANGLE and WEAVE.

A WEB program consists of a highly stylized dialect of Pascal, interspersed by lengthyWEB

comments describing the purpose and function of every element and module of the pro-

gram (Knuth would probably deny this, and say that a WEB program consists of a highly

elaborate description of the workings of the program, interspersed by occasional fragments

of Pascal which implement that functionality: and he would almost certainly be right!).

By permitting the elements of a Pascal program to be presented in arbitrary order (as

opposed to the strict order of presentation required by the Pascal standard), WEB allows

the programmer the opportunity to present the elements of a program in a natural and

logical order, as opposed to the artificial order imposed by the Pascal design criterion of

‘efficient compilability’; it is then the task of TANGLE to paste together these fragments in

the order required by Pascal, and the task of WEAVE to bring together both the program

fragments and the comment fragments into a form which can immediately be typeset by

TEX.

Thus for the first time TEX became self-referential: in order to be able to produceself-referential

the Pascal code from the WEB source, one needed a working version of TANGLE; to be able

to produce a literate listing of the WEB source, one needed a working copy of WEAVE; but

both TANGLE and WEAVE are themselves written in WEB, so to produce a working TANGLE

March 27, 2004 7

Donald E. Knuth 1.4. TEX

one needs a working TANGLE, and so ad infinitum. Of course ‘bootstrapping’ (as the tech-

nique is generally termed) is well understood in the Computer Science world, and it was

estimated that the task of ‘hand compiling’ TANGLE from the WEB source was well within

the competence of ‘the average implementor’; however, there are stories of people suffering

many pains attempting this bootstrapping for themselves. . .

During the reimplementation, Knuth rewrote almost the complete TEX program: he

had learned much about its limitations during the first couple of years of use, and by 1982

a completely rewritten TEX had emerged. This version of TEX (often referred to as TEX82,TEX82

to differentiate it from the earlier version which analogously became known as TEX78) wasTEX78

rapidly ported to a wide range of machines, and is quite possibly the most widely available

program in the world today, being available on every class of system from the smallest PC

to the largest supercomputer. Its almost universal acceptance as the standard package foruniversal accept.

computer typesetting is almost certainly the result of a large set of very positive attributes:positive attribs.

the source of the program, and the vast majority of implementations, are available either

free of charge or at a modest cost which covers no more than the media on which they

are supplied; the program is virtually bug-free, a claim which Knuth backed up until very

recently by offering a check for every bug found, the value of the check doubling eachcheck for a bug

year since the scheme’s inception (he still offers a check, but the value no longer doubles,

since he estimated that before too long it might exceed the total Federal reserves. . .); the

program is highly stable (there were virtually no major changes during the period 1982–90,

and similarly there have been virtually no changes at all since 1990, nor will there be at any

point in the future); and there exists a large community of TEX users organized into TUGcommunity assist.

(TEX Users Group, see below), so any real problems resulting from a lack of experience

with TEX can be rapidly resolved by a message to any one of a number of TEX-related

mailing lists and news groups.

So, during the 1980’s, TEX emerged as the standard package for computer typeset-standard package

ting: it was available on almost every conceivable system, device drivers were writtendevice drivers

for everything from dot-matrix printers to 2400dpi phototypesetters (but not daisy-wheel

printers!), and an ever-increasing number of publications appeared which were either type-

set using TEX, or were about TEX, or both. Many scientific journals adopted it (or onescient. journals

of its derivatives such as LATEX, which may be thought of as a somewhat restrictive but

more user-friendly ‘front end’ to TEX) as the standard format in which papers were to be

prepared. Since an author could very easily proof a paper using a local implementation ofidentical results

TEX, and since TEX was guaranteed to produce identical results no matter on which system

it was run, the number of iterations between author and publisher was reduced to the bare

minimum, so everybody was happy. And since TEX has been designed by a mathematician,math-oriented

and since a part of its objective had been to allow mathematics to be typeset almost as

easily as running text, its take-up by the mathematical community was if anything even

faster than its take-up by the scientific and academic communities in general.

March 27, 2004 8

Donald E. Knuth 1.4. TEX

Example of typesetting a math formula with TEX

To give a simple example of why TEX is ideally suited to the typesetting of mathematics,

consider the following set of equations:

(
∫

∞

−∞

e−x2

dx

)2

=

∫

∞

−∞

∫

∞

−∞

e−(x2+y2) dx dy

=

∫ 2π

0

∫

∞

0

e−r2

r dr dθ

=

∫ 2π

0

(

−
e−r2

2

∣

∣

∣

∣

r=∞

r=0

)

dθ

= π. (11)

A mathematician writing this by hand would almost certainly start with the left-mostby hand

element of the first line, proceed from left to right, and alternate between baseline, subscript

and superscript elements as logic dictated; a pure WYSIWYG (‘What you see is what youWYSIWYG

get’) word processor, on the other hand, would require the typist to analyze each row of

the equations into horizontal strata (thus the top stratum might contain only ∞, 2, ∞,

and ∞, for example) and to enter these stratum by stratum; since, in general, WYSIWYG

systems do not automatically displace preceding or following lines of text horizontally

when an intervening line is shortened or lengthened, the correction of such equations is

tedious and error-prone in the extreme. More recent, WYSIWYG-like, systems require aadv. WYSIWYG

different approach in which the author has to enter the formula in the order dictated by

its parse-tree; needless to say, this approach too demands more of the author than should

reasonably be expected.

TEX allows the mathematician to enter the formulas in the most natural manner,TEX’s way

starting at the left and finishing at the right; alignment is automatically maintained if

insertions or deletions are made, and even the horizontal alignment of the four primary

= signs is performed automatically, virtually regardless of the length of individual left or

right elements. To clarify this, here is the exact TEX source which was used to set the

table:
$$

\eqalignno

{\biggl(

\int_{-\infty}^\infty e^{-x^2}\,dx

\biggr)^2

&=\int_{-\infty}^\infty

\int_{-\infty}^\infty

e^{-(x^2+y^2)}\,dx\,dy \cr

&=\int_0^{2\pi}\int_0^\infty

e^{-r^2}r\,dr\,d\theta \cr

&=\int_0^{2\pi}

\biggl(

-{e^{-r^2}\over 2}

March 27, 2004 9

Donald E. Knuth 1.4. TEX

\bigg \vert_{r=0}^{r=\infty}\,

\biggr)

\,d\theta \cr

&=\pi.&(11)\cr

}

$$

It is worth noting that TEX completely ignores any spaces in mathematical text,ignores spaces

since the rules for typesetting mathematics are complex, and cannot be expected to be

understood by mere mathematicians! Thus the layout of the equations above is simply

for the convenience of the author, and is completely ignored by TEX, which is far more

concerned by special characters such as dollars, backslashes, braces, underscores, carets andspecial chars

ampersands. And whilst each of these characters has a distinct meaning to TEX (a dollar

symbol, for example, both introduces and terminates a stretch of mathematical text), that

meaning may at any time be overridden, and either assigned to a different character or, ifoverr. semantics

not needed, turned of completely. So, for example, if some particular computer lacked a

backslash key, it would be trivial to assign the semantics of backslash to some other key

(say, yen, if a Japanese keyboard were to be used).

Furthermore, it can be seen that TEX is highly mnemonic in its choice of controlmnemonic

sequences (‘commands’, preceded by a backslash); to pick out just a few examples, \int

represents an integral sign, \infty an infinity, \exp the exp operator (representing the

exponential e), and so on. Compound subscripts and superscripts are presented in logicallogical order

order, rather than in order of their appearance vertically on the page; and facilities are

provided for the author to give TEX hints about the logical structure of the expression, so

that (for example), \, is used to set off differentials such as dθ from the preceding text by

a little extra white space, thereby improving both the appearance and the legibility of the

expression.

Thus the attraction of TEX for mathematicians is clear: a highly logical markup lan-TEX attractions

guage, capable of being entered from any keyboard; access to a very wide range of math-

ematical symbols; professional standards of layout; widespread acceptability by journals;

and the ability to proof on anything from a dot-matrix printer to a 600dpi laser printer.

Add to this the now universal ability to preview the document on the computer screen

(something the early advocates of TEX could only dream of), and it is hard to explain why

any mathematician with access to a computer would not typeset his papers using TEX!

Internationalization of TEX. Reimplementations of TEX

However, use of TEX is restricted neither to mathematicians nor to North Americans, and

at the TEX User Group conference in 1989, an influential and voluble group of European

TEX users ganged up on Knuth and succeeded in convincing him that, despite his assertion

on the previous day of the conference that the development of TEX was finished, there were

features missing from the current implementation which made TEX entirely useless to the

majority of the world, since whilst it behaved perfectly in unaccented languages, it was

grossly deficient for typesetting any language which made more than occasional use of

March 27, 2004 10

Donald E. Knuth 1.4. TEX

diacritics. And Knuth, recognizing the validity of this argument, agreed that something

had to be done.

The result of all this was TEX3: TEX82 became known simply as TEX2, and TEX3TEX3

became the One True TEX. In practice, this just didn’t happen: those who had no need

for the extended diacritic support offered by TEX3 simply continued to use TEX2, and for

quite a while TEX macro writers had to write very defensive code which first checked the

environment before making any assumptions about (for example) the number of distinct

characters with which TEX could internally deal (this was 128 prior to TEX3, and 256

thereafter). With the release of TEX3, Knuth made it absolutely clear that this really didTEX is frozen

represent the end of the TEX evolutionary line: he had better things to do with his time,

and TEX was now frozen (modulo any essential bug fixes, which he undertook to continue

to make if and only if it could be shown that their fixing was essential). Furthermore he

made it equally plain that TEX could not be further evolved by anyone else: he wished

to leave for his children, and for his children’s children, and for all perpetuity, TEX as his

creation, and not as his-creation-as-modified-by-someone-else.

In general, the TEX world took this in good part: Knuth is enormously highly respected

by those who use TEX, and there were very few who advocated ignoring his wishes and who

were prepared to suggest modifying TEX. But there were also a quite significant number

of TEX users who felt that if TEX did not evolve, then it would simply die. Not because ofwould die

any fundamental deficiencies in TEX—it is generally accepted that there are very few—but

because the world had moved on since 1978, and whilst a script-driven language might have

been state-of-the-art then, it most certainly was not state-of-the-art now. Furthermore,

despite increasing the number of distinct internal characters from 128 to 256, Knuth hadAsian languages

done little if anything to enhance TEX to deal with Asian languages, in which the number

of distinct characters may be measured in thousands if not in tens of thousands. And

finally, there were those who felt that there were some areas in which a very significantcheap improvem.

increase in functionality could be gained (particularly from the perspective of the macro

programmer, who is also known as a ‘format writer’ when the suite of macros provides a

complete functional system in its own right) with relatively little investment in terms of

modifying TEX.

The implementation of these ideas probably represents the leading edge of TEX tech-successors

nology today: companies such as Blue Sky have produced instantaneous/incremental TEXBlue Sky

interpreters, which are capable of displaying the effects of a change to the source code of

a TEX document in real time; Advent Publishing have produced 3B2, which allows both3B2

a graphical and a textual specification of a layout, automatically updating one to reflect

changes in the other; John Plaice and Yannis Haralambous have implemented a 64-bit64-bit version

version of TEX which uses Unicode internally; and the NTS group, where NTS stands forNTS’s e-TEX

‘New Typesetting System’, have produced a completely compatible successor to TEX, called

e-TEX, which adds functionality without compromising compatibility (the NTS group also

wish to re-implement TEX from scratch, using a modern rapid-prototyping language such

as Prolog or CLOS, the idea being to allow rapid experimentation with alternative type-

setting algorithms or paradigms). Whether or not any of these ideas will catch on remains

March 27, 2004 11

Donald E. Knuth 1.4. TEX

to be seen, although among Apple Macintosh aficionados Classic Textures (the Blue Sky

product referred to above) is already highly thought of. One fundamental question is thatstability issue

of stability: since one of the great strengths of TEX is its stability, how will the world

feel about systems which encompass TEX but which are specifically intended to remain

evolutionary and responsive, rather than fossilized and unyielding? Only time will tell.

What is perhaps worth noting is that all of these projects have ensured that Knuth’sTEX is honored

wishes are honored not only in the letter but in the spirit: none seeks to call itself TEX

(indeed, that of John Plaice and Yannis Haralambous is called Omega, which could never

be confused with TEX), yet all acknowledge the debt which they owe to Knuth and to TEX:

without them, none of these other projects would ever have seen the light of day.

TUG and TUGboat

There are an enormous number of TEX users throughout the world, who have bandedTUG

together to form the TEX Users Group (TUG), in order to exchange information about

common problems and solutions. Most of TUG’s members are only too keen to pass on

their expertise to any who need it, so any real problems resulting from a lack of experience

with TEX can be rapidly resolved by a message to any one of a number of TEX-related

mailing lists and news groups. Even those without network access are not cut off, as the

TUG office offers telephone support from 03:00 in the morning until late in the evening—aphone support

service which is not restricted to members of TUG.

A newsletter/journal called TUGboat has been published since 1980, featuring articlesTUGboat

about all aspects of TEX and METAFONT. TUG has a network of “site coordinators” who

serve as focal points of communication for people with the same computer configurations.

Occasional short courses are given in order to provide concentrated training in special

topics; videotapes of these courses are available for rental. Meetings of the entire TUG

membership are held at least once a year. You can buy TEX T-shirts at these meetings.

Information about membership in TUG and subscription to TUGboat is available from

TEX Users Group

Email: TUG@tug.org

Internet: http://www.tug.org/

TEX in Russia

TEX in Russia made its appearance in the mid-1980’s. At first, TEX was only known

to the scientists who traveled to scientific institutes in Western Europe and the USA.

They were, as a rule, the physicists, including scientists from the Institute of High Energy

Physics (IHEP, in Protvino). The first Cyrillic version of TEX appeared at that very1st Cyr. version

institute. It became known as “Protvinskaya”; the authors were S. Klimenko, B. Malyshev,

A. Samarin, et al. The first Cyrillic font in this version was tt: according to the rules oftt font

thesis preparation at the time, they had to be typed on a typewriter (not a computer!).

The young scientists devised a way to deceive the bureaucrats, so that they did not have

to retype materials that were prepared on computers.

March 27, 2004 12

Donald E. Knuth 1.4. TEX

By the end of the 80’s and the beginning of the 90’s, TEX had lost its exotic nature.

There were some specialists and groups of scientists who began using TEX with some

Cyrillic fonts and to implement their own Cyrillic versions of TEX.

In an agreement between the American Mathematical Society and Soviet publishingAMS training

houses (Mir and Nauka) and Leningrad State University, three Russian specialists were

sent to the AMS for AMS-TEX training. During this visit, they called on the TUG office

and the idea to create CyrTUG in the USSR was born.

In the spring of 1991 (May 23–24), there was a “constituent assembly” of CyrTUGCyrTUG

at Mir Publishers. There were 23 TEX users from Moscow, Protvino, St. Petersburg and

Novosibirsk at the meeting. The participants reported on their work on Cyrillic versions of

TEX, and the President, Executive Director, and the Board were elected. The Cyrillic TEX

Users Group (or, in Russian: Associacĭıa Polzovatelĕı Kirillicheskogo TEX’a) was born.

For the five years CyrTUG has been in existence, some 700 TEX users have beenCyrTUG memb.

members, with about 50 scientific institutes, universities, and publishing houses as insti-

tutional members. There have also been citizens of the USA, Slovak Republic, Czech Re-

public, Switzerland, and the Netherlands; institutional members include CERN (Geneva),

JINR (Dubna), Mir Publishers (Moscow), MekhMat faculty of Moscow State University,

UrbanSoft (St. Petersburg), Institute of Mathematics (Kazan), Electrotechnical Institute

(Novosibirsk), Institute of Mathematics and Mechanics (Ekaterinburg), and others. The

Grand Wizard, Donald Knuth, is an honorary member of CyrTUG: during his visit to

St. Petersburg he was presented with card No. 0314.

LATEX

Among the various macro packages developed for TEX, LATEX probably is the most widely

used.

LATEX was originally written by Leslie Lamport. In 1994 the LATEX package washistory

updated by the LATEX3 team, led by Frank Mittelbach, to include some long-requested

improvements, and to reunify all the patched versions which had cropped up since the

release of LATEX 2.09 some years earlier. To distinguish the new version from the old, it is

called LATEX2ε.

LATEX is much easier and safer to work with than TEX; it has a number of built-in

safety features and a large set of error messages.

LATEX, building on TEX, provides the following additional features:add. features

• An article is divided into logical units such as an abstract, sections, theorems, alogical units

bibliography, and so on. The logical units are typed separately. After all the units

have been typed, LATEX organizes the placement and formatting of these elements.

• LATEX relieves you of tedious bookkeeping chores. Consider a completed article, withbookkeep. chores

theorems and equations numbered and properly cross-referenced. Upon final reading,

some changes must be made, for example, section 4 has to be placed after section 7,

and a new theorem has to be inserted somewhere in the middle. Such a minor change

used to be a major headache! But with LATEX, it becomes almost a pleasure to make

such changes. LATEX automatically redoes all the numbering and cross-references.

March 27, 2004 13

Donald E. Knuth 1.5. METAFONT and METAPOST

• Typing the same bibliographic references in article after article is a tedious chore.bibl. reference

With LATEX you may use BIBTEX, a program that helps you create and maintain

bibliographic databases, so references need not be retyped for each article. BIBTEX

will select and format the needed references from the databases.

1.5. METAFONT and METAPOST

METAFONT

METAFONT was developed by Donald Knuth as part of the TEX typesetting system. META-

FONT is a graphics programming language (like PostScript) designed for producing com-

plete typeface families, but it has applications wider than just fonts—it can also produce

geometric designs, dingbats, etc. And it has considerable mathematical and equation-

solving capabilities which can be useful entirely on their own.

METAFONT is a batch language, like C or Pascal: you compile a METAFONT programbatch lang.

into a corresponding font, rather than interactively drawing lines or curves. This approach

has both considerable disadvantages (people unfamiliar with conventional programmingdisadvantage

languages will be unlikely to find it usable) and considerable advantages (you can makeadvantage

your design intentions specific and parameterizable).

Metafonts exhibit some very desirable qualities. One of the important features ismetafonts

that metafonts can scale very gracefully. The metafont Computer Modern has differentscaling

shape at 20 point and 10 point. The shape changes with size, because it is desirable for

a smaller font to be proportionately wider than a larger font (this makes the larger fonts

more elegant and the smaller fonts more readable). Prior to Adobe’s multiple master

technology, METAFONT was unique with respect to having this feature.

It’s main weakness is that it is not as ubiquitous as TrueType or Type 1. It is also notnot ubiquitous

quite suited to WYSIWYG publishing. Of course, this isn’t a major disadvantage whenWYSIWYG

TEX is your typesetting system.

METAPOST

METAPOST is a programming language much like Knuth’s METAFONT except that it

outputs PostScript programs instead of bitmaps. It was developed by John D. Hobby

based on the sources for METAFONT.

Borrowed from METAFONT are the basic tools for creating and manipulating pictures.borrowed tools

These include numbers, coordinate pairs, cubic splines, affine transformations, text strings,

and boolean quantities. Additional features facilitate integrating text and graphics andadd. features

accessing special features of PostScript such as clipping, shading, and dashed lines. An-

other feature borrowed from METAFONT is the ability to solve linear equations that are

given implicitly, thus allowing many programs to be written in a largely declarative style.

By building complex operations from simpler ones, METAPOST achieves both power and

flexibility.

March 27, 2004 14

Donald E. Knuth 1.5. METAFONT and METAPOST

METAPOST is particularly well-suited to generating figures for technical documentspurpose

where some aspects of a picture may be controlled by mathematical or geometrical con-

straints that are best expressed symbolically. In other words, METAPOST is not meant

to take the place of a freehand drawing tool or even an interactive graphics editor. It

is really a programming language for generating graphics, especially figures for TEX and

troff documents. The figures can be integrated into a TEX document via a freely avail-figs. in TEX

able program called dvips as shown in Fig. 1. A similar procedure works with troff: thefigs. in troff

dpost output processor includes PostScript figures when they are requested via troff’s \X

command.

Figures in METAPOST TEX Document

METAPOST TEX

Figures in PostScript dvi file

dvips

PostScript

Fig. 1. A diagram of the processing for a TEX document with figures in METAPOST

METAPOST is able to easily include TEX or LATEX text within its graphic output, sointegr. text

tags on graphs and drawings can match the text font exactly. The METAPOST package

includes special macro packages for drawing graphs and for drawing boxes and ovals. See

Fig. 2 for the examples of what can be achieved with METAPOST.

March 27, 2004 15

Donald E. Knuth 1.5. METAFONT and METAPOST

x axis

y
a
x
is

y =
2

1 + cos x

f > 0 P

Q

R

S

di· · · ni ni+1 di+1 · · · nk dkndtable:

...

hashtab:

ndblock

Start
B

(a|b)∗a

C

b∗

D

(a|b)∗ab
Stop

b

b

a

a

a

b b

a

a

b

Fig. 2. What METAPOST can do

March 27, 2004 16

Part 2

RICHARD M. STALLMAN

2.0. Background

Richard M. Stallman is the initiator and the main ideologist of the Free Software Foun-

dation, an organization founded to promote free software development. He authored such

software as GNU Emacs, gcc, gdb, and GNU make. The free software movement sparked

by Stallman had and will continue to have many significant consequences not only for the

computer world but for the entire society.

2.1. Biography

Stallman graduated from Harvard in 1974 with a B.A. in physics. During his college years,education

he also worked as a staff hacker at the MIT Artificial Intelligence Lab, learning operating

system development by doing it. He wrote the first extensible Emacs text editor there

in 1975. In January 1984 he resigned from MIT to start the GNU project.

Stallman received the Grace Hopper award in 1991 from the Association for Com-awards

puting Machinery, for his development of the first Emacs editor. In 1990 he was awarded

a MacArthur foundation fellowship, and in 1996 an honorary doctorate from the royal

institute of Technology in Sweden. In 1998 he received the Electronic Frontier Founda-

tion’s pioneer award along with Linus Torvalds. In 1999 he received the Yuri Rubinski

award. In 2001 he received a second honorary doctorate, from the University of Glas-

gow, and shared the Takeda award for social/economic betterment with Torvalds and Ken

Sakamura. In 2002 he was elected to the National Academy of Engineering.

2.2. The GNU Project

The first software-sharing community

When Richard Stallman started working at the MIT Artificial Intelligence Lab in 1971, he

became part of a software-sharing community that had existed for many years. Sharing of

software was not limited to that particular community; it is as old as computers, just as

sharing of recipes is as old as cooking.

The AI Lab used a timesharing operating system called ITS (the Incompatible Time-ITS OS

sharing System) that the lab’s staff hackers had designed and written in assembler language

for the Digital PDP–10, one of the large computers of the era. As a member of this com-

munity, an AI lab staff system hacker†, Stallman’s job was to improve this system.

† The use of “hacker” to mean “security breaker” is a confusion on the part of the mass media. Hackers

refuse to recognize that meaning, and continue using the word to mean, “Someone who loves to program

and enjoys being clever about it.”

March 27, 2004 17

Richard M. Stallman 2.2. The GNU Project

The community did not call their software “free software,” because that term did notorig. free sware

yet exist; but that is what it was. Whenever people from another university or a company

wanted to port and use a program, they gladly let them. If you saw someone using an

unfamiliar and interesting program, you could always ask to see the source code, so that

you could read it, change it, or cannibalize parts of it to make a new program. The peoplemutual benefit

who provided the source code gained in the process, as the borrower would have introduced

his/her own additional features to the program, features that everybody was perfectly free

to borrow in return.

The collapse of the community

The situation changed drastically in the early 1980’s when Digital discontinued the PDP–10PDP discont.’d

series. Its architecture, elegant and powerful in the 60’s, could not extend naturally to the

larger address spaces that were becoming feasible in the 80’s. This meant that nearly all

of the programs composing ITS were obsolete.

The AI lab hacker community had already collapsed, not long before. In 1981, thehired away

spin-off company Symbolics had hired away nearly all of the hackers from the AI lab, and

the depopulated community was unable to maintain itself. When the AI lab bought a newDigital’s

PDP–10 in 1982, its administrators decided to use Digital’s non-free timesharing system

instead of ITS.

The modern computers of the era, such as the VAX or the 68020, had their ownother non-free

operating systems, but none of them were free software: you had to sign a nondisclosure

agreement even to get an executable copy.

The infamous Xerox printer

At this time, Richard Stallman had an experience which considerably influenced his sub-

sequent life and would lead ultimately to the inception of the GNU Project.

Xerox Corporation had donated a new laser printer to AI lab, a common practice withXerox donation

big companies. A cutting edge prototype, it was a modified version of the popular Xerox

photocopier. But it wasn’t until a few weeks after its arrival that the machine’s flawsflaws

began to surface. Chief among the drawbacks was the machine’s inherent susceptibility to

paper jams. It was quite frustrating, as users had to run back and forth to check that thepaper jams

printer was not jammed once again.

Years before, when the lab was still using its old printer, Stallman had solved a similarsimilar problem

problem by opening up the printer driver on the lab’s PDP–11 machine. Stallman couldn’t

eliminate paper jams, but he could add code that ordered the PDP–11 to check the printer

periodically and report back to the PDP–10, the lab’s central computer. To ensure that

one user’s negligence didn’t bog down an entire line of print jobs, Stallman also added

code that instructed the PDP–10 to notify every user with a waiting print job that the

printer was jammed. Because the message went out to the people with the most pressing

need to fix the problem, chances were higher that the problem got fixed in due time. A

minute or two after the printer got in trouble, the two or three people who got messages

would arrive to fix the machine. Of those two or three people, one of them, at least, would

usually know how to fix the problem.

March 27, 2004 18

Richard M. Stallman 2.2. The GNU Project

When Stallman spotted the print-jam defect in the new Xerox laser printer, he didn’t

panic. He simply looked for a way to update the old “hack” for the new system. In theupdate “hack”

course of looking up the Xerox laser-printer software, however, Stallman made a troubling

discovery. The printer didn’t have any software, at least nothing Stallman or a fellowno sources

programmer could read. Until then, most companies had made it a form of courtesy to

publish source-code files for all software. Xerox, in this instance, had provided software files

in binary form. But the notion of information sharing was so central to the hacker culturematter of time

that Stallman knew it was only a matter of time before some hacker in some university lab

or corporate computer room proffered a version of the laser-printer software source code.

In a short while, Stallman learned that a scientist at the computer-science departmentrumor

at Carnegie Mellon University had just departed a job at the Xerox Palo Alto Research

Center. Not only had the scientist worked on the laser printer in question, but according

to rumor, he was still working on it as part of his research duties at Carnegie Mellon.

Within a few months, Stallman had a business-related reason to visit the Carnegievisit Carnegie M.

Mellon campus. During that visit, he made sure to stop by the computer-science depart-

ment. Department employees directed him to the office of the faculty member leading the

Xerox project. When Stallman reached the office, he found the professor working there.

After briefly introducing himself as a visitor from MIT, Stallman requested a copy

of the laser-printer source code so that he could port it to the PDP–11. To his surprise,

the professor refused to grant his request. The professor’s unwillingness to hand over theprofess. refused

source code stemmed from a nondisclosure agreement, a contractual agreement betweennondiscl. agr.

the professor and the Xerox Corporation giving the professor access to the software source

code in exchange for a promise of secrecy. Now a standard item of business in the software

industry, the nondisclosure agreement, or NDA, was a novel development at the time, a

reflection of both the commercial value of the laser printer to Xerox and the information

needed to run it.

For Stallman, however, the NDA was something else entirely. It was a refusal onRMS’s percept.

the part of Xerox to participate in a system that, until then, had encouraged software

programmers to regard programs as communal resources. Stallman’s attempt to drop in on

a fellow programmer unannounced had been intended as a demonstration of neighborliness.

Now that the request had been refused, it felt like a major blunder. “I was so angry Iquote

couldn’t think of a way to express it. So I just turned away and walked out without another

word,” Stallman recalls. “I might have slammed the door. Who knows? All I remember

is wanting to get out of there.”

A stark moral choice

With the community gone, to continue as before was impossible. Instead, Stallman faced

a stark moral choice.

The easy choice was to join the proprietary software world, signing nondisclosureeasy choice

agreements. Another choice, straightforward but unpleasant, was to leave the computeranother choice

field. None of these choices seemed to please Stallman, so he asked himself, was there

March 27, 2004 19

Richard M. Stallman 2.2. The GNU Project

a program or programs that he could write, so as to make the community possible once

again?

What was needed first was an operating system. That is the crucial software forOS needed 1st

starting to use a computer. With an operating system, you can do many things; without

one, you cannot run the computer at all. A free operating system could make a community

of cooperating hackers possible.

As an operating system developer, Stallman had the right skills for this job. He choseright skills

to make the system compatible with UNIX because the overall design was already provedUNIX compat.

and portable, and because compatibility made it easy for UNIX users to switch from UNIX

to GNU. The name GNU was chosen following a hacker tradition, as a recursive acronymname “GNU”

for “GNU’s Not UNIX.”

An operating system does not mean just a kernel, barely enough to run other programs.not just a kernel

In the 1970’s, every operating system worthy of the name included command processors,

assemblers, compilers, interpreters, debuggers, text editors, mailers, and much more. ITS

had them, Multics had them, VMS had them, and UNIX had them. The GNU operating

system would include them too.

GNU software and the GNU system

Developing a whole system is a very large project. To bring it into reach, Stallman decideduses existing sw.

to adapt and use existing pieces of free software wherever that was possible. For example,

he decided at the very beginning to use TEX as the principal text formatter; a few years

later, he decided to use the X Window System rather than writing another window system

for GNU.

Because of this decision, the GNU system is not the same as the collection of all GNU

software. The GNU system includes programs that are not GNU software, programs that

were developed by other people and projects for their own purposes, but which could be

used because they are free software.

Commencing the project

In January 1984 Stallman quit his job at MIT and began writing GNU software. Leavingquits MIT

MIT was necessary so that MIT would not be able to interfere with distributing GNU aswhy quit

free software. If Stallman had remained on the staff, MIT could have claimed to own the

work, and could have imposed their own distribution terms, or even turned the work into

a proprietary software package.

The first steps

Shortly before beginning the GNU project, Stallman heard about the Free UniversityVUCK

Compiler Kit, also known as VUCK. (The Dutch word for “free” is written with a V.)

This was a compiler designed to handle multiple languages, including C and Pascal, and

to support multiple target machines. Stallman wrote to its author asking if GNU could

use it.

March 27, 2004 20

Richard M. Stallman 2.2. The GNU Project

He responded derisively, stating that the university was free but the compiler was

not. Stallman therefore decided that his first program for the GNU Project would be a

multi-language, multi-platform compiler.

Hoping to avoid the need to write the whole compiler himself, Stallman obtained thePastel

source code for the Pastel compiler, which was a multi-platform compiler developed at

Lawrence Livermore Lab. It supported, and was written in, an extended version of Pascal,

designed to be a system-programming language. Stallman added a C front end, and began

porting it to the Motorola 68000 computer. But Stallman had to give that up when he

discovered that the compiler needed many megabytes of stack space, and the available

68000 UNIX system would only allow 64k.

At this point, Stallman concluded he would have to write a new compiler from scratch.GCC

That new compiler is now known as GCC; none of the Pastel compiler is used in it. But

that was some years later; first, Stallman worked on GNU Emacs.

GNU Emacs

Emacs is an advanced, extensible, customizable, self-documenting real-time display editor.

Stallman began work on GNU Emacs in September 1984, and in early 1985 it was beginning

to be usable.

At this point, people began wanting to use GNU Emacs, which raised the question of

how to distribute it. Stallman put it on the anonymous ftp server on the MIT computerdistr. via ftp

that he used. But at that time, many of the interested people were not on the Internet and

could not get a copy by ftp. Stallman had no job, and he was looking for ways to makeno job

money from free software. So he announced that he would mail a tape to whoever wantedselling tapes

one, for a fee of $150. In this way, Stallman started a free software distribution business,FS dist. business

the precursor of the companies that today distribute entire Linux-based GNU systems.

Free as in freedom

The term “free software” is sometimes misunderstood—it has nothing to do with price.

It is about freedom. Here, therefore, is the definition of free software—a program is free

software, for you, a particular user, if:

• You have the freedom to run the program, for any purpose.

• You have the freedom to modify the program to suit your needs. (To make this

freedom effective in practice, you must have access to the source code, since making

changes in a program without having the source code is exceedingly difficult.)

• You have the freedom to redistribute copies, either gratis or for a fee.

• You have the freedom to distribute modified versions of the program, so that the

community can benefit from your improvements.

Since “free” refers to freedom, not to price, there is no contradiction between sellingno contradiction

copies and free software. In fact, the freedom to sell copies is crucial: collections of free

software sold on CD-ROMs are important for the community, and selling them is anraise funds

important way to raise funds for free software development.

March 27, 2004 21

Richard M. Stallman 2.2. The GNU Project

Because of the ambiguity of “free,” people have long looked for alternatives, but noaltern. for “free”

one has found a suitable alternative. The English Language has more words and nu-

ances than any other, but it lacks a simple, unambiguous word that means “free,” as

in freedom—“unfettered” being the word that comes closest in meaning. Such alterna-

tives as “liberated,” “freedom,” and “open” have either the wrong meaning or some other

disadvantage.

Copyleft and the GNU GPL

If a program is free software when it leaves the hands of its author, this does not necessarilycan go propriet.

mean it will be free software for everyone who has a copy of it. For example, public

domain software (software that is not copyrighted) is free software; but anyone can make

a proprietary modified version of it. Likewise, many free programs are copyrighted but

distributed under simple permissive licenses which allow proprietary modified versions.

The goal of GNU was to give users freedom. So the GNU Project needed to useprotect freedom

distribution terms that would prevent GNU software from being turned into proprietary

software. The method they use is called “copyleft.”

Copyleft uses copyright law, but flips it over to serve the opposite of its usual purpose:flips copyright

instead of a means of privatizing software, it becomes a means of keeping software free.

The central idea of copyleft is that everyone has permission to run the program, copycan’t restrict

the program, modify the program, and distribute modified versions—but not permission

to add restrictions of their own. Thus, the crucial freedoms that define “free software” are

guaranteed to everyone who has a copy; they become inalienable rights.

For an effective copyleft, modified versions must also be free. This ensures that workmodif.’s also free

based on the GNU Project’s work becomes available to their community if it is published.

When programmers who have jobs as programmers volunteer to improve GNU software,

it is copyleft that prevents their employers from saying, “You can’t share those changes,

because we are going to use them to make our proprietary version of the program.”

A related issue concerns combining a free program with non-free code. Such a combi-combine f./non-f.

nation would inevitably be non-free; whichever freedoms are lacking for the non-free part

would be lacking for the whole as well. So anything added to or combined with a copylefted

program must be such that the larger combined version is also free and copylefted.

The specific implementation of copyleft that the GNU Project uses for most GNUother copylefts

software is the GNU General Public License, or GNU GPL for short. There are other

kinds of copyleft that are used in specific circumstances. GNU manuals are copylefted

also, but use a much simpler kind of copyleft, because the complexity of the GNU GPL is

not necessary for manuals.

The Free Software Foundation

As interest in using Emacs was growing, other people became involved in the GNU project,

and the GNU Project decided that it was time to seek funding once again. So in 1985 they

created the Free Software Foundation, a tax-exempt charity for free software development.

The FSF also took over the Emacs tape distribution business; later it extended this by

March 27, 2004 22

Richard M. Stallman 2.2. The GNU Project

adding other free software (both GNU and non-GNU) to the tape, and by selling free

manuals as well.

The FSF accepts donations, but most of its income has always come from sales—ofincome from sales

copies of free software, and of other related services. Today it sells CD-ROMs of source

code, CD-ROMs with binaries, nicely printed manuals, all with freedom to redistribute

and modify, and Deluxe Distributions (where they build the whole collection of software

for your choice of platform).

Free Software Foundation employees have written and maintained a number of GNUwrites sware

software packages. Two notable ones are the C library and the shell. The GNU C libraryGNU libc

is what every program running on a GNU/Linux system uses to communicate with Linux.

It was developed by a member of the Free Software Foundation staff, Roland McGrath.

The shell used on most GNU/Linux systems is BASH, the Bourne Again Shell, which wasBASH

developed by FSF employee Brian Fox.

The GNU Hurd, Linux and GNU/Linux

By 1990, the GNU system was almost complete; the only major missing component waslacking kernel

the kernel. The GNU Project had decided to implement their kernel as a collection of

server processes running on top of Mach. Mach is a microkernel developed at CarnegieMach

Mellon University and then at the University of Utah; the GNU HURD is a collectionGNU HURD

of servers that run on top of Mach, and do the various jobs of the UNIX kernel. Thestart delayed

start of development was delayed as the GNU Project waited for Mach to be released as

free software, as had been promised. Furthermore, making the HURD work solidly has

stretched on for many years.

So the GNU Hurd is not yet ready for production use. Fortunately, another kernelLinux is ready

is available. In 1991, Linus Torvalds developed a UNIX-compatible kernel and called it

Linux. Around 1992, combining Linux with the not-quite-complete GNU system resultedfree OS complete

in a complete free operating system. (Combining them was a substantial job in itself, of

course.) It is due to Linux that we can actually run a version of the GNU system today.

The GNU community calls this system version GNU/Linux, to express its composition“GNU/Linux”

as a combination of the GNU system with Linux as the kernel.

March 27, 2004 23

Part 3

LINUS TORVALDS

3.0. Background

Linus Torvalds is the creator of the Linux kernel, used in the many GNU/Linux operating

system variants. By now, thousands of programmers have contributed to the development

of the kernel, yet Torvalds was the creator, and the mastermind behind the original.

Torvalds made a huge impact on emerging developers, and an even larger one on the

computer users community in general.

3.1. Biography

Linus Torvalds was born in Helsinki, Finland on December 28, 1969 to Nils and Mikke

Torvalds. Surprisingly, for most of his life Linus Torvalds lived in a very non-computernon-comp. envir.

oriented environment. Both his parents were very outspoken liberalists and journalists by

trade. Linus’ first exposure to computers was around 1980 when his grandfather boughtCommodore

a Commodore VIC–20, which he used to analyze statistical data. He greatly encouraged

Linus to use the new machine and Linus listened to his grandfather’s encouragement. His

passion for computers and programming grew exponentially. His first computer was a1st computer

Sinclair QL, which was a common PC alternative in Europe at the time. He instantly

took to developing and on his own learned BASIC, Assembly, and then C—now a common

development practice among programming curricula.

In the fall of 1988, Torvalds enrolled in Helsinki University as a Computer Scienceeducation

major. There he honed his skills as a programmer and was exposed to larger, faster, and

more common systems. By 1991, he had enough money to buy his own 386sx PC. He thenstarted Linux

started writing the piece of software that would make his name known worldwide.

In 1997 Linus Torvalds received 1997 Nokia Foundation Award. In March of 1997 heawards

received Lifetime Achievement Award at Uniforum Pictures. In 1998 Torvalds received

the Electronic Frontier Foundation’s pioneer award along with Richard Stallman. In 2001

he shared the Takeda award for social/economic betterment with Stallman and Ken Saka-

mura.

3.2. Linux kernel. GNU/Linux

First usable kernel

Torvalds started with basic x86 assembly language, which all Intel-based computers used,

and soon became quite comfortable with the new system. However, he was not satisfied

with the software that was available for it. MS-DOS was available for the average user,DOS & XENIX

and for a while XENIX was available for the high-end users. However, even XENIX

March 27, 2004 24

Linus Torvalds 3.2. Linux kernel. GNU/Linux

seemed incomplete to him. Minix, another current operating system developed by AndyMinix

Tannenbaum, was another possibility, but because of its initial success was licensed and

copyrighted by Prentice Hall and was soon corrupted with corporate marketing ploys.

Linus decided to create his own PC-based version of UNIX, and in 1991 Linus started“Linus’s Minix”

coding “Linus’ Minix,” or “Linux.”

Months of determined programming work yielded the beginnings of an operating sys-

tem kernel known as Linux that, eight years later, developed into what many observers

saw as a genuine threat to mighty Microsoft and its seemingly ubiquitous Windows OS.

The kernel has finally reached the stage where it was usable for some purposes—itran bash, gcc, . . .

could successfully run bash, gcc, GNU make, GNU sed, compress. Torvalds posted aposted message

message on the Internet to alert other PC users to his new system. He made the software

available for free downloading and released the source code, which meant that anyone

with knowledge of computer programming could modify Linux to suit their own purposes.

Linux soon had a following of enthusiastic supporters who, because they had access to the

source code, were able to help Torvalds retool and refine the software.

Combining the GNU Project’s operating system with Linux

But the kernel was not yet an operating system—to be of any use to its users, it had toadd. software

be augmented by additional software, including both system software (command language

interpreters, compilers, libraries, back-up software, telnet, etc.) and so-called “application

software” (graphical desktop environments, spreadsheets, games, graphics viewers, video

players, etc.).

Torvalds and his followers could choose to develop all that software from scratch, butmake themselves

this was a daunting task which would take years to accomplish. Of course, there was theuse proprietary

alternative of using some other, proprietary software, but that would defy the idea behind

the Linux kernel to become “free” software which anybody could use and modify for the

benefit of the entire community. Fortunately, the GNU Project (initiated by Richard M.GNU Project

Stallman) was already working on such free operating system for almost a decade. The

GNU system was lacking this very component—the kernel. Around 1992, combining Linux

with the not-quite-complete GNU system resulted in a complete free operating system.

Combining them was a substantial job in itself, of course. The resulting system is com-“GNU/Linux”

monly referred to as “GNU/Linux,” to express its composition as a combination of the

GNU system with Linux as the kernel.

Collaborative development. FreeBSD project

Communicating heavily with other Minix coders over USENET groups, Linus’ kernel soonMinix contrib.

took shape. Without the help of his Minix community counterparts, Linus could not have

written his kernel, and it would not have become what it is today.

Other factors also helped the growth of the Linux kernel. In the early 1990’s, mostly

92–94, the GNU/Linux operating system was shaping up to be a full-featured developer-

centered operating system. However, at the same time another similar project was takingFreeBSD

off in the UNIX community, one controlled and developed by a whole team of experts.

March 27, 2004 25

Linus Torvalds 3.2. Linux kernel. GNU/Linux

This project was FreeBSD, also a port of the UNIX operating system for the x86 proces-

sor architecture. For a time it seemed that the two operating systems were in a heated

competition to release the best and biggest before the other. Though, in retrospect, this

occurrence fueled the speedy development of both operating systems. Both thrived in their

own right. In the end, a nasty lawsuit from the UNIX System Laboratories (a subsidiary ofnasty lawsuit

AT&T), brought the development of FreeBSD to a temporary halt, and indirectly provided

great marketing value for the Linux project.

After Linus released early versions of his kernel as free software, developers were con-

stantly helping the development of new features. Though it would seem that an unknownseeming mess

group of hundreds (now thousands) of developers all working on the same code all at once

would end up in a mess of unusable code, it turned out to be quite the opposite. The

product of this system was a quickly developed, fast, stable, secure operating system for

developers, by developers.

Rising popularity. Support by commercial companies

Operating GNU/Linux required a certain amount of technical acumen; it was not as easy to

use as more popular operating systems such as Windows, Apple Computer Inc.’s Mac OS,

or IBM’s OS/2. Because its volunteer developers prided themselves on the quality of their

work, however, GNU/Linux evolved into a remarkably reliable, efficient system that rarely

crashed. GNU/Linux got its big break in the late 1990’s when competitors of Microsoft

began taking the upstart OS seriously. Netscape Communications Corp., Corel Corp.,

Oracle Corp., Intel Corp., and other companies announced plans to support GNU/Linux

as an inexpensive alternative to Windows.

By 1999 Torvalds had become a cult hero to a devoted band of computer users. An

estimated seven million computers were running on GNU/Linux by 1999, still available

free of charge. Meanwhile, Torvalds had taken a position with Transmeta Corp., ownedTransmeta Corp.

by Microsoft co-founder Paul Allen.

Linux Distributions

After GNU/Linux gained “release” quality, meaning it was stable enough to be used on a

day-to-day basis under any circumstance, Linus’ role in development of the kernel seemed

to fade away. Because of the overwhelming popularity of the project and the GNU license

on the code, people started packaging their own fully functional operating systems and

distributed them to a niche of users. These operating systems were just preconfigured

GNU/Linux systems. This became the basis of what is now commonly called a “distro,”

meaning GNU/Linux distribution. Linus’ main role then was just a Linux kernel distribu-kernel distr.’tor

tor. Although he still made some administrative decisions pertaining to the development,not much coding

he did not do much coding at all.

Conclusion

The GNU/Linux operating system now enjoys thousands of developers constantly working

on the code, and millions others developing software to be run on it, not to mention the

millions of end-users running GNU/Linux, or some Linux distribution. Because of one

March 27, 2004 26

Linus Torvalds 3.2. Linux kernel. GNU/Linux

man’s ambition, the computing world has never been the same. Millions of people have

enjoyed helping development of the operating system and millions of others have enjoyed

using the quality operating system as an alternative to other inferior products.

Richard M. Stallman, Linus Torvalds, and Donald E. Knuth engage

in a discussion on whose impact on the computerized world was the great-

est. Stallman: “God told me I have programmed the best editor in the

world!” Torvalds: “Well, God told me that I have programmed the best

operating system in the world!” Knuth: “Wait, wait—I never said that.”

— From news://rec.humor.funny

submitted by ermel@gmx.de (ERIK MELTZER)

March 27, 2004 27

Bibliography

I have not given formal references in the text as they are hardly appropriate in a document

of this nature. Following is the list of publications pertaining to the above discussion and/or

used in the preparation of this document, which the reader may find interesting.

Donald E. Knuth. The Art of Computer Programming. Addison–Wesley, 1998, third

edition, ISBN 0–201–89683–4.

Ronald L. Graham, Donald E. Knuth, Oren Patashnik. Concrete Mathematics:

a Foundation for Computer Science. Addison–Wesley, 1994, second edition,

ISBN 0–201–55802–5.

Donald E. Knuth. Mathematical Typography. Bulletin of the American Mathemati-

cal Society (new series) 1 (March 1979), 337–372. [Reprinted as part 1 of TEX and

METAFONT: New Directions in Typesetting (Providence, R.I: American Mathemati-

cal Society, and Bedford, Mass: Digital Press, 1979).]

Donald E. Knuth. Tau Epsilon Chi, a system for technical text. Stanford Computer

Science Report 675 (Stanford, California, September 1978), 198 pp. [Reprinted as

part 2 of TEX and METAFONT, the book cited above.]

Donald E. Knuth. The WEB system of structured documentation. Stanford Computer

Science Report 980 (Stanford, California, September 1983), 206 pp.

Donald E. Knuth. Literate programming. The Computer Journal 27 (1984), 97–111.

Literate programming site. http://www.literateprogramming.com/

Donald E. Knuth. The TEXbook. Addison–Wesley, 1984.

Norman Walsh. Making TEX Work. Available on-line:

http://MakingTeXWork.SourceForge.net/mtw/index.html

TUG (TEX Users Group). Email: TUG@tug.org; Internet: http://www.tug.org/

TUGboat. ftp://tug.org/

Philip Taylor. Computer Typesetting or Electronic Publishing? New trends in scientific

publication. TUGboat, 17(4) (1996), 367–381.

Irina A. Makhovaya. TEX in Russia: ab ovo or About the TEXnical evolution in Russia.

TUGboat, 17(3) (1996), 259–264.

Jeffrey McArthur. Developing Database Publishing Systems Using TEX. TUGboat,

19(2) (1998), 188–194.

Alan Hoenig. Introducing METAPOST. TUGboat, 16(1) (1995), 45.

D. P. Story. AcroTEX: Acrobat and TEX Team Up. TUGboat, 20(3) (1999), Proceed-

ings of the 1999 Annual Meeting, 196–201.

March 27, 2004 28

Bibliography

Bart Childs. Teaching CS/1 Courses in a Literate Manner. TUGboat, 16(3) (1995), Pro-

ceedings of the 1995 Annual Meeting, 300–309.

Leslie Lamport. LATEX: A Document Preparation System. Addison–Wesley, Reading,

Massachusetts, second edition, 1994, ISBN 0–201–52983–1.

George A. Grätzer. Math into LATEX: an introduction to LATEX and AMS-LATEX.

Birkhäuser Boston, 1996.

Tobias Oetiker, Hubert Partl, Irene Hyna, Elisabeth Schlegl. The Not So Short Intro-

duction to LATEX2ε. CTAN:info/lshort/english

AcroTEX’s home page. http://www.math.uakron.edu/~dpstory/acrotex.html

Donald E. Knuth. The METAFONTbook. Addison–Wesley, Reading, Massachusetts,

1986. Volume C of Computers and Typesetting.

John D. Hobby. A User’s Manual for METAPOST. AT&T Bell Laboratories.

GNU’s home page. http://www.gnu.org/home.html

Richard Stallman’s personal home page. http://www.stallman.org

Sam Williams. Free as in Freedom: Richard Stallman’s Crusade for Free Software.

O’Reilly & Associates, 2002. Also available on-line:

http://www.oreilly.com/openbook/freedom/index.html

Linus Torvalds, David Diamond. Just for Fun: the Story of an Accidental Revolution-

ary. Harper Business, 2001.

Linux Magazine. http://www.linux-mag.com/

Linux Documentation Project. http://sunsite.unc.edu/LDP/

Lars Wirzenius, Joanna Oja. The Linux System Administrators’ Guide.

http://www.iki.fi/viu/linux/sag/

Eric S. Raymond. The Cathedral and the Bazaar.

http://www.tuxedo.org/~esr/writings/cathedral-bazaar

March 27, 2004 29

